

Syllabus

Co-requisites

None

First Year Experience/Capstone Designation

This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category

None

FLCC Values

Institutional Learning Outcomes Addressed by the Course

Inquiry, Perseverance, and Interconnectedness

Course Learning Outcomes

Course Learning Outcomes

- 1. Explain ecological concepts using appropriate terminology.
- 2. Apply ecological concepts to explain observed patterns (spatial and temporal) in community structure and function.
- 3. Practice technical writing skills.
- 4. Integrate information from appropriate sources (primary and secondary).

Outline of Topics Covered

- I. Introduction to Ecology
 - **I.** Definition
 - II. Hierarchical Levels of Ecology
 - III. Scientific method
 - IV. Observation/Manipulative experiments
 - V. Data and Graph interpretation
- II. Climate
 - Global Climate Patterns (e.g. Hadley Cells, Coriolis Effect, Thermohaline Circulation)

II. Regional Climate Modifications (e.g. elevation, aspect, lake effect snow, orographic effect, upwelling, monsoons, etc.)

III. Soils

- I. Soil Forming Factors
- II. Soil Horizons
- III. Soil Texture and Properties

IV. Aquatic Systems

- **I.** Water's Chemical and Physical Properties (e.g. covalent and hydrogen bonds, polarity, viscosity, cohesion, etc.)
- II. Lentic vs. Lotic
- III. Stream Orders
- IV. Seasonal Stratification and Mixing
- V. Eutrophic vs. Oligotrophic
- VI. Vertical and Horizontal Zones

V. Community Ecology

- I. Community Composition and Structure
- II. Relative Abundance
- III. Species Diversity Concepts and Equations
- IV. Succession
- V. Individualistic (Gleason) vs. Closed (Clements) Community Models

VI. Biomes

- I. Characteristic Climatic
- **II.** Edaphic and Biological Properties of Eight Major Biomes (i.e. tropical rainforests, deserts, savannah, chaparral, temperature deciduous forest, temperate grassland, taiga, and tundra)

VII. Evolution

- I. Mechanisms of Evolution (Natural Selection, Mutations, Selective Mating, Migration, Genetic Drift)
- II. Eco-Types
- III. Phenotypic Plasticity

VIII. Plant & Animal Adaptations

- I. Autotrophs vs. Heterotrophs
- II. Photosynthesis (light reaction and Calvin Cycle)
- **III.** Photosynthetic Pathways (C₃, C₄, CAM)
- **IV.** Plant and Animal Adaptations in Response to Different Selective Pressures (e.g. low light, low oxygen, low moisture, hot/cold temperature)
- V. Different Animal Adaptations for Energy and Nutrient Consumption (i.e. feeding strategies and digestive tracts) and Maintaining Homeostasis (e.g. ectothermy vs. endothermy)

IX. Life History Traits

- I. Sexual vs. Asexual
- II. Sexual Forms (i.e.monoecious, dioecious, synoecious)

- **III.** Mating Systems (e.g. monogamy, polygamy)
- IV. Intrasexual Selection vs. Intersexual Selection
- V. Altricial vs. Precocial
- VI. R-Selection vs. K-Selection Strategies
- X. Population Ecology
 - I. Properties of Populations
 - II. Population Growth Models (i.e. exponential and logistics)
 - III. Intraspecific Population Regulation Dynamics
- XI. Species Interactions
 - I. Types of Species Interactions
 - II. Fundamental vs. Realized Niche
 - III. Interspecific Competition
 - **IV.** Predation